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Abstract
Exoplanets are planets outside solar system. Some of them may host life or be

habitable, and each tells us something new about our own solar system. Most
prominent astronomical method of exoplanet detection is currently transit method,
which aims to detect regular planetary eclipses of stars (i.e., transits). Transiting
exoplanet surveys such as Kepler and TESS observe thousands of stars over
yearslong periods, thus producing a substantial amount of data in need of efficient
and reliable automated analysis.
This thesis reviews modern algorithms that aim to distinguish true transits from

unrelated events in the data. The algorithms are compared by their architecture,
performance and applicable missions to determine the state-of-the-art and identify
the best approaches. The results indicate that ExoMiner V1.2 (Valizadegan et al.,
2023) and Astronet-Triage-v2 (Tey et al., 2023) outperform other models for Kepler
and TESS data, accordingly. In general, deep learning methods, such as convolu-
tional neural networks, are the best tools for the problem, with potential for even
further improvement from self-attention-based transformer models. This study
mainly used qualitative analysis, and further research could focus on quantitative
comparison of performance on newest datasets.

Keywords exoplanet astronomy, exoplanets, exoplanet detection methods,
convolutional neural networks, transformer models, planets and
satellites, machine learning, deep learning
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1. Introduction

Ever since the first planet was found orbiting a star like our Sun,
astronomers around the world have been hunting for distant worlds
that could host life like on Earth. By 2023, scientists had discovered
over 5,000 confirmed exoplanets — i.e., planets outside our solar
system (NASA, n.d.), such as LTT 1445Ac (Figure 1.1). Exoplanet
research is important for multiple reasons, such as extending our
knowledge about the formation of our planetary system, search-
ing for habitable planets (i.e., those with Earth-like conditions and
chemical compositions), and looking for life in the universe (e.g.,
via detecting certain biomarkers in the atmosphere and with infor-
mation theory (Vannah et al., 2023)).

Figure 1.1. Artist’s concept of one of the nearest detected Earth-size exoplanets,
LTT 1445Ac. The planet can be seen as a black dot in front of the
bright sphere. Another planet orbiting the same star, LTT 1445Ab, is
in the lower left corner. The star forms a triple system with two red
dwarfs that can be seen on the right. The system is located 22 light
years from the Sun, which can be seen as a bright dot on the lower
right. (NASA et al., 2023)

Purpose-built telescopes, such as the Kepler Space Telescope, have
generated a significant amount of data, most of which is accessible
through the Mikulski Archive for Space Telescopes (MAST)1. Ini-
1MAST

1
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Introduction

tially, this data had to be processed manually by researchers and
volunteers with the goal of detecting potential exoplanets and then
further analyzing whether the candidate was a planet. However, that
proved to be a time-intensive task (e.g., NASA Exoplanet Archive
contains observations from over 100 million stars (NASA, n.d.)).
Moreover, manual examinations were found to be subject to human
error (Pearson et al., 2017).
Several methods of exoplanet detection exist, the most prominent

one to date being the transit method. It examines the brightness
of a star as a function of time (i.e., its light curve) in attempt to
detect the planets passing between some star and the observer. Due
to the high amount of noise, weak transit signals, large amount of
data, and other challenges (Jara-Maldonado et al., 2020), there is a
need for efficient and accurate algorithms for transiting exoplanet
detection.
With recent developments in fields of machine learning and arti-

ficial intelligence, new powerful methods of light curves analysis
have emerged. These include promising results from convolutional
neural network approaches (Chintarungruangchai and Jiang, 2019)
and Transformer architectures (Salinas et al., 2023). Consequently,
the aim of this thesis is to demonstrate the extent of current state
of research in the field by conducting a state-of-the-art literature
review. This work provides a modern guide to ML for transiting
exoplanet research and outlines some algorithms that promise to
be useful in further exploration of the sky.
The study is organized as follows. Section 2 outlines most promi-

nent astrophysical methods of exoplanet detection, introduces rele-
vant space missions and describes the light curve data that is used
by the algorithms reviewed in this thesis. Section 3 elaborates on
the methods used in selection of papers. Then, Section 4 introduces
selected few algorithms in detail. Finally, Section 5 provides a com-
parative analysis of the algorithms covered and Section 6 draws
conclusions.
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2. Background

The following section provides the necessary astrophysical foun-
dation, describes the relevant observatories and space missions,
and explains some of the methods utilized in exoplanet research.
Then, it familiarizes reader with the structure of data from transiting
exoplanet surveys.
The first telescopes tasked with searching for planets outside our

solar system were located in ground-based facilities, usually on
high mountains, where light pollution is relatively low, such as the
Wide Angle Search for Planets (WASP) survey located on the Canary
Islands (Pollacco et al., 2006).
Space-based missions were then also created, because they were

unaffected by day-night cycles and atmospheric events, among other
reasons. For instance, NASA launched the Kepler Space Telescope
in 2009; the primary goal of which was to hunt exoplanets in one
section of the Milky Way galaxy. The Kepler mission showed that
there are more planets than stars in the universe (NASA, 2019) and
surveyed over 500 thousand stars over nine years, including the
extended mission K2. The information collected by the telescope is
still being used to detect more exoplanets (Jara-Maldonado et al.,
2020). The Kepler mission provided over 9,000 Kepler Objects of
Interest (KOIs) — stars that show periodic dimming which might be
indicative of one or several planets orbiting them (NASA Exoplanet
Archive, 2024).
More recently, the Transiting Exoplanet Survey Satellite (TESS)

was launched, which is currently active in its extended phase. This
telescope was designed to monitor only the closer stars (i.e, up to
300 light-years as opposed to 3,000 of Kepler). However, TESS looks
at a much wider angle (over 75% of the sky), while Kepler was fixed
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Background

on only a small segment during its primary mission (Koch et al.,
2010; Ricker et al., 2015). The mission has already collected over
7,000 TESS Objects of Interest (TOIs) and is likely to collect more
(NExScI, 2024).
Exoplanets in the scope of this thesis are defined as planets orbiting

a star other than the Sun. In this regard, Borucki et al. (2011)
separates exoplanets into following classes: Earth-size (Rp < 1.25R⊕),
super-Earth-size (1.25R⊕ ≤ Rp < 2R⊕), Neptune-size (2R⊕ ≤ Rp <

6R⊕), and Jupiter-size (6R⊕ ≤ Rp < 15R⊕). Moreover, an important
term for extraterrestrial life research is Habitable Zone (HZ) — i.e.,
the range of orbit radii where life could form. By some definitions,
this range is 0.95 to 1.15 AU (Kasting et al., 1993). Undetected
planets in this range could be predicted with the Titius-Bode law
(Mousavi-Sadr et al., 2021).
This section further explains the basic physical methods of exo-

planet detection, such as the radial velocity method (Section 2.1.2)
and transit method (Section 2.1.1). As illustrated by Figure 2.1,
the transit method accounts for almost all detections. However,
other methods are important for alternative source confirmation
and for obtaining further information about the planets. The nature
and properties of the transit data collected by the telescopes are
described further in Section 2.2.

Figure 2.1. Confirmed exoplanet discoveries, grouped by method. Data from
NASA (n.d.).
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2.1 Exoplanet Detection Methods

2.1.1 Transit

A transit event is a planet passing between an observer and a star.
Transits are detected using light curves — i.e., light from a star
as a function of time. A typical transit can be characterized by its
depth, duration, and period (which corresponds to the period of
orbit around the star). When the planet passes in front of a star, the
flux that arrives at the observer decreases from the normal value,
which is the main evidence of a transit. Moreover, when the planet
passes directly behind the star (half a period later), the flux from
the system also slightly drops since the observer does not receive
the light reflected from the planet; this event is called a secondary
eclipse or occultation, illustrated by Figure 2.2.

Figure 2.2. A planet transit. Credit: Roen Kelly for Astronomy

The transit method is considered an affordable method of exo-
planet detection, as one transit survey allows for the monitoring of
thousands of stars simultaneously. As illustrated by Figure 2.1, it is
the most effective method of exoplanet discovery to date.
This method can also calculate the ratio between the size of the

planet and its host star and orbital period. In some cases, the data
can even reveal the stellar mass, stellar radius and orbital semi-
major axis (Seager and Mallén-Ornelas, 2003).
The key limitation of the method is that it is restricted to planets

whose orbital plane is inclined at a very specific angle to the observer
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unless the planet is very close to the star (Jara-Maldonado et al.,
2020). Furthermore, larger planets have higher chance of being
detected with this method.
Finally, special configurations of stars and some other events might

produce a similar-looking dip in the light curve (Beky, 2014), which
is the reason secondary observations are usually required to confirm
the transit.

2.1.2 Radial Velocity

The radial velocity method considers small stellar wobbles caused
by the alternating gravitational pull from an orbiting planet. The
changes in radial velocity (i.e., velocity in the direction from or to the
observer) affect the wavelengths of the absorbed spectrum of the
stellar light via the Doppler effect. When the star is moving towards
the observer, its absorption lines are blue shifted (towards lower
wavelengths); when it is moving outwards, a red shift is observed.
The radial velocity (RV) method accounts for the first few hundred

exoplanets ever confirmed, mostly with data from ground-based
telescopes (Butler et al., 2006). Moreover, the first-ever exoplanet
detection may have happened using the RV method (Mayor and
Queloz, 1995). RV method is also commonly utilized to confirm
planets that were initially discovered with other methods (such as
the transit method) and to get more information about their charac-
teristics, such as estimated mass-radius range (Rogers, 2015).
However, the RV method is connected to several challenges. Its

main shortcoming is caused by the fact that the exoplanet-caused
stellar wobbles are often too small to be detected, which raises de-
pendency on precision of the telescope equipment (Jara-Maldonado
et al., 2020). Moreover, the method detects planets with larger mass
and smaller orbit radius more often because of a more noticeable
gravitational impact. Second, because spectroscopy is pointed at
the optical spectrum, the method is biased against stars with cooler
temperatures since their light emission has higher wavelengths.

2.1.3 Other Methods of Exoplanet Detection

One of the less used methods is direct imaging, which attempts to
obtain images of exoplanets, which may also produce information
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about their chemical composition and temperature. It requires
high-contrast telescopes, because one of its main challenges is
to spatially separate the planet from its star. Another method is
gravitational microlensing, which exploits the gravitational impact
of an exoplanet on the light of distant stars. One of its main issues
is connected to rarity and unpredictability of such events when the
impact is noticeable. Finally, timing variation and orbital brightness
modulation are also sometimes used to detect exoplanets. The list
of confirmed planets maintained by NASA includes planets detected
by 11 different astrophysical methods (NASA, n.d.).
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2.2 Transit data

The minimally processed transit data is an array of high-resolution
images from telescopes. As Valizadegan et al. (2022) argues, this
data is too high-dimensional to train a Machine Learning (ML) model
on, considering the scarcity of labeled transit data. Thus, accord-
ing to researchers, imaging data is processed through complex
pipelines, such as the Kepler Science Processing Pipeline (Jenkins
et al., 2010), which infers the light curves, runs basic tests, performs
data cleaning, and generates so-called Data Validation (DV) reports
on suspected transit events with acceptable signal-to-noise ratio —
threshold-crossing events (TCE). A summary page of an example
DV report can be seen in Figure 2.3.

Figure 2.3. A DV summary report corresponding to transit of Kepler-7b, or KOI
97.01. (A) Full-time series plot; (B) Phased full-orbit flux plot; (C)
Secondary eclipse plot; (D) Phased transit-only flux plot; (E) Whitened,
phased transit-only plot; (F) Odd-even transit plot; (G) Centroid offset
plot; (H) DV analysis table (NASA Exoplanet Archive, 2013).

Traditionally, scientists reviewed the DV reports and manually
filtered out signals that appeared spurious (Jenkins et al., 2014),
after which, the remaining data was released for follow-up studies
in the form of KOI/TOI lists. This manual process may be augmented
or replaced by algorithms described in further sections.
It is worth noting that due to the limited amount of available

labeled transits, synthetically generated data is often used to train
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ML models. Armstrong et al. (2021) uses interpolation to allow
probability calibration at high precision. Moreover, Mandel and
Agol (2002) developed analytic formulas that allow for simulating
light curve data, which are used in the batman Python package
for modeling exoplanet transits (Kreidberg, 2015). Light curves,
KOI/TOI lists, TCEs, and other data for future transiting exoplanet
research can be found on the website of NASA Exoplanet Archive1.

1NASA Exoplanet Archive
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3. Methodology

The thesis is a literature review of different algorithms of transit-
ing exoplanet detection. The algorithms are split into categories
according to their objectives and structure, as in Valizadegan et al.
(2022). The first category is expert systems, which are based on
if-else clauses and are heavily reliant on domain knowledge incorpo-
rated in them. The second category includes generative approaches,
which use Bayes’ theorem to generate the probability of a certain
TCE being a true transit, based on prior assumptions about false
positive (FP) scenarios. Finally, the discriminative algorithms cate-
gory includes approaches that estimate the true transit probability
using some underlying function, such as deep neural network.
Due to the nature of expert system and generative algorithms,

they may only take scalar values as input. Thus, they are not able
to process time series data or images. Depending on the underly-
ing architecture, some discriminative approaches are also limited
to scalar values, e.g., Autovetter (Jenkins et al., 2014). However,
many recent deep neural network approaches, such as ExoMiner
(Valizadegan et al., 2022) utilize the flux time series data in some
form.
The papers have been found using the NASA Astrophysics Data

System (ADS)1 and prioritised by normalized citation count. Several
papers were also included and prioritised if cited in other high-
citation papers such as Valizadegan et al. (2022). Five key papers
were chosen and elaborated on in Section 4, and a summarization
table with these and five more papers may be found in Section 5.

1The SAO/NASA Astrophysics Data System
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4. Results

4.1 Expert System Algorithms

The following section describes statistical algorithms that provide
foundation of the automated exoplanet detection. These algorithms
are designed to work with scalar input characteristics, such as FP
test statistics and transit duration.

4.1.1 Robovetter

Robovetter1 is the algorithm that was applied to automatically gen-
erate the KOI list from the final data release of the Kepler Space
Telescope (Thompson et al., 2018a; NASA Exoplanet Archive). A
ported version of Robovetter called TEC has also been applied to
TESS data (Guerrero et al., 2021). The program essentially repro-
duces the steps of a typical human review of a DV report with if-else
conditions. The high-level diagram of the algorithm (Figure 4.1)
provides an insight into the basic tests for FPs.
Automation of the manual vetting process reduced cognitive load

and human error and made large-data processing possible. However,
replicating the manual process exposes this approach to similar bias
caused by manually chosen rules and features.
1https://github.com/nasa/kepler-robovetter
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Results

Figure 4.1. Overview flowchart of the Robovetter (Thompson et al., 2018a).

4.2 Generative Algorithms

4.2.1 Vespa

Vespa2 is an influential library that calculates FP probability for
every KOI (Morton et al., 2016). It assumes class priors p(y = 1) and
p(y = 0) as well as likelihoods p(X|y = 0) and p(X|y = 1) to compute
the posterior probability using the Bayes theorem:

p(y = 1|X) =
p(y = 1) ∗ p(X|y = 1)

p(X)
.

X in this context denotes the input features from a DV report, and
p(y = 1) is the probability of the event being caused by a planetary
transit. The algorithm is considered to confirm KOIs when the
posterior probability is over 0.99. Other Bayesian algorithms for
statistical exoplanet validation include PASTIS (Díaz et al., 2014),
BLENDER (Torres et al., 2015 and TRICERATOPS (Giacalone et al.,
2021).

2https://github.com/timothydmorton/vespa
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4.3 Discriminative Algorithms

Several researchers have implementedmachine learning approaches
to transiting exoplanet detection. Jenkins et al. (2014) applied ran-
dom forests in their Autovetter algorithm to identify the most im-
portant metrics for exoplanet status. In contrast with Robovetter
(Coughlin et al., 2016), this algorithm makes fewer assumptions
about the significance of different features. However, Autovetter
still depends on the engineered features derived from DV reports
and data pipelines.
Recent research has focused on deep learning, a subset of ma-

chine learning algorithms that are composed of complex processing
layers; this structure allowed them to become state-of-the-art in
many domains, such as object recognition and drug discovery (Le-
Cun et al., 2015). Specifically, convolutional neural network (CNN)
architectures seem to be most effective at classification of suspected
transit events (Figure 4.2).

Figure 4.2. Precision vs. recall on a light curve dataset for neural networks with
three different architectures. (Shallue and Vanderburg, 2018)

4.3.1 AstroNet

Shallue and Vanderburg (2018) were some of the first researchers to
use neural networks and deep learning in exoplanet detection. Their
model AstroNet3 is a one-dimensional CNN. The model considers
both local and global views of the phase-folded light curve, which
are passed through two disjoint convolutional columns and then
3https://github.com/google-research/exoplanet-ml
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combined through fully connected layers (Figure 4.3).

Figure 4.3. Convolutional neural network for light curve classification, with local
and global views of the light curve. (Shallue and Vanderburg, 2018)

Researchers demonstrated that their model successfully learned
the importance of secondary eclipse and the differences between
true transits and FP cases, such as eclipsing binaries. However, their
analysis shows that AstroNet still performs worse than Robovetter
on simulated light curve data.

4.3.2 ExoMiner

Building on the main ideas of AstroNet, Valizadegan et al. (2022)
designed a deep neural network ExoMiner that takes as inputs most
of the parameters present in a typical DV report (Figure 4.4).

Figure 4.4. ExoMiner architecture. The model uses local (transit-view) and global
(full-orbit) views of time series as well as scalar values. (Valizadegan
et al., 2022)

Feature selection and general structure of the model have been
informed by domain knowledge, while hyperparameters were op-

14
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timized using Bayesian Optimization and Hyper-Band optimizer
(Falkner et al., 2018).
Furthermore, researchers compared performance of ExoMiner

and other classifiers including AstroNet (Shallue and Vanderburg,
2018), Robovetter (Coughlin et al., 2016) and GPC (Armstrong et
al., 2021) on the Kepler Q1–Q17 DR25 TCE catalog with 10-fold
cross-validation (Valizadegan et al., 2022). The analysis showed
that ExoMiner has superior values in precision, recall, and other
relevant metrics. For example, the accuracy value was, on average,
0.996, while that of Robovetter was 0.994. Moreover, the model is
able to retrieve a significantly higher percentage of all exoplanets
at a fixed precision value of 0.99.
Finally, researchers present an explainability framework tailored

for ExoMiner based on a branch-occlusion sensitivity technique
(Valizadegan et al., 2022). This addresses an important problem in
machine learning algorithms for exoplanet detection that is caused
by the high cost of misclassification and builds trust in the classifier.
In their later work, Valizadegan et al. (2023) explores the use of

diversity boost information, as described in Rowe et al. (2014), to
further improve the performance of classifiers mentioned above,
including ExoMiner. Other works focused on the prediction of undis-
covered exoplanets in multi-planetary systems include Mousavi-Sadr
(2024).

4.3.3 Transformer-Based Classifier

Salinas et al. (2023) were the first researchers to apply self-attention
mechanism to automatic classification of transit signals. Trans-
former deep learning models, which are based on the self-attention
technique, proved to be successful in other fields, notably natural
language processing (Gillioz et al., 2020). However, the architec-
ture is applicable to any sequential data, including light curves.
Just as neural networks attempt to mimic the way the human brain
works, attention mechanisms try to reproduce the practice of selec-
tive focusing on some part of information while ignoring the rest.
The approach is thus architecturally different from CNNs such as
AstroNet or ExoMiner.
The inputs of the model are similar to those of ExoNet (Ansdell

et al., 2018) - local and global views of the transit stacked with
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Figure 4.5. General Transformer model architecture. The model consists of en-
coder (on the left) and decoder (on the right), which use stacked
self-attention mechanisms without convolution. (Vaswani et al., 2017)

centroid views, as well as stellar parameters as a separate branch of
the model. The model is trained and evaluated on real data from the
new TESS telescope, and it achieves results comparable to those of
the state-of-the-art CNN solutions. As the research on Transformer
models is currently rapidly growing, the technology may potentially
perform better than the current state-of-the-art.

16



5. Discussion

This thesis described some of the most significant research papers
in the field of automated exoplanet detection. A detailed comparison
of these and several other works is shown on Figure 5.2.
It is worth noting that most works used a unique dataset, which ob-

structs immediate qualitative comparison of performance of models
presented. In some cases, an updated version of the same dataset
was released after the paper was published, such as the Kepler
Data Release 25 (DR25) KOI catalog that was made public in 2018
(Thompson et al., 2018b). In other cases, the training and/or valida-
tion dataset has been based on or enriched with simulated data.
Several research papers compared their algorithm to others by

running them on one dataset. For example, Ansdell et al. (2018) and
Malik et al. (2021) used Astronet (Shallue and Vanderburg, 2018)
as a benchmark. However, one of the most extensive qualitative
comparisons of different classifiers to the author’s knowledge was
done by Valizadegan et al., 2022. Researchers ran six models on the
same dataset and compared them across several metrics. Resulting
accuracy values are shown on Figure 5.1. The plot demonstrates
the incredible progress made in the field in the past decade, and
shows that ExoMiner became one of the only models that outperform
Robovetter, a rule-based classifier system. Furthermore, one can
observe that many state-of-the-art models achieve very high, almost
ideal metric values: each algorithm presented on Figure 5.1 has
accuracy over 98%. Valizadegan et al. (2022) even claims that the
area under receiver operating characteristic curve (AUC) is 1.000
for Exominer, which is the ideal value of the statistic.
Metrics such as AUC, accuracy, precision or recall may be sub-

optimal to compare the models in the field of exoplanet detection
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Figure 5.1. Area under precision-recall curve of several models on Kepler DR25
dataset used in Valizadegan et al. (2022). Mean values over folds in a
10-fold cross-validation are shown, black lines denote the standard
deviation. Note: the Y axis of the graph starts with 0.90, which is
already a very high value.

due to relatively low number of available labeled confirmed exoplan-
ets. Since deep learning models usually require high amounts of
training data for reliable results, researchers often use simulated
light curves, which may prevent generalization on real data. Fur-
thermore, even though, for example, Kepler mission has produced
observations of over 100,000 stars (Borucki et al., 2010), only un-
der 2,800 statistically confirmed planets were found by the mission
(NASA, n.d.). Because machine learning usually requires a balanced
dataset to produce reliable results, the researchers are often forced
to consider only a similarly small amount of non-transit TCEs in
training the models. Thus, in addition to the aforementioned met-
rics, many researchers consider aspects of their models such as
explainability and training set sensitivity (Valizadegan et al., 2022)
and examine the misclassified datapoints case by case (Armstrong
et al., 2021).
Deep learning algorithms seem to perform significantly better

in comparison with other machine learning or statistical methods,
likely because (1) these models are able to almost independently
learn feature importance and feature engineering and (2) they re-
ceive the light curve time series data instead of some summarizing
statistic value. Figure 5.2 shows an extended list of automatic clas-
sifiers for exoplanet detection. It could be used in future research
for design of new exoplanet detection models or benchmarking.
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6. Conclusion

Exoplanet detection is a complex task that requires understand-
ing of astrophysics, statistics and machine learning. One of the
most promising physical methods of exoplanet detection is the tran-
sit method, which attempts to find eclipses of observed stars that
may signify presence of one or several orbiting planets. This study
presented several legacy and state-of-the-art algorithms for classifi-
cation of transiting exoplanet survey data. It may hopefully be useful
to designers of future transiting exoplanet detection algorithms, as
new data emerges and new survey missions are launched.
Deep learning techniques currently exhibit the best performance

in transit signal classification task. State-of-the-art implementation
for Kepler data, ExoMiner V1.2 (Valizadegan et al., 2023), is based
on 1D-CNN architecture, however, emerging DL approaches, such
as self-attention mechanisms (Salinas et al., 2023) also show high
potential. The state-of-the-art for TESS data is Astronet-Triage-v2
(Tey et al., 2023), which is currently used in the MIT Quick-Look
Pipeline. ExoMiner is also expected to be soon adapted to TESS
data (Valizadegan et al., 2024).
This thesis does not provide an exhaustive list of all transiting exo-

planet detection algorithms, focusing only on most influential papers.
Moreover, the current work only provides a qualitative comparison
of different models. Further research could focus on quantitative
comparison, which would require compiling a single dataset that
all models would be then trained and evaluated on. Finally, as the
field of deep learning is rapidly evolving and transformer models
are getting better at sequential data analysis, new models are likely
to be worth applying to the problem of classification of suspected
transit events.
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